[hahy-zuh n-burg; German hahy-zuh n-berk] /ˈhaɪ zənˌbɜrg; German ˈhaɪ zənˌbɛrk/

Werner Karl
[ver-nuh r kahrl] /ˈvɛr nər kɑrl/ (Show IPA), 1901–76, German physicist: Nobel Prize 1932.
/ˈhaɪzənˌbɜːɡ; German ˈhaizənbɛrk/
Werner Karl (ˈvɛrnər karl). 1901–76, German physicist. He contributed to quantum mechanics and formulated the uncertainty principle (1927): Nobel prize for physics 1932

in reference to German physicist Werner Heisenberg (1901-1976), pioneer of quantum mechanics. His “uncertainty principle” (deduced in 1927) is that an electron may have a determinate position, or a determinate velocity, but not both.
German physicist who founded the field of quantum mechanics in 1925 and elaborated the uncertainty principle in 1927. He was awarded the Nobel Prize for physics in 1932.

Our Living Language : Philosophical problems concerning what it means to know something about the world have always been of interest to many scientists, but philosophy underwent an unexpected twist with the advent of what we now call the uncertainty principle or the Heisenberg uncertainty principle, after its discoverer. A brilliant physicist, Werner Heisenberg had made discoveries by the age os 24 that would garner him a Nobel Prize a few years later (in 1932), namely, a way of formulating quantum mechanics using the then-new branch of mathematics called matrix algebra. In 1927, he formulated a quantum mechanical indeterminacy or uncertainty principle, which concerns how accurately certain properties of subatomic particles can be measured. Earlier physical theories had held that the accuracy of such measurements was limited only by the accuracy of available instruments. Heisenberg overturned this notion by demonstrating that no matter how accurate the instruments, the quantum mechanical nature of the universe itself prevents us from having complete knowledge of every measurable property of a physical system simultaneously. For example, the more precise our knowledge of a subatomic particle’s position, the less precise our knowledge of its momentum; more profoundly, the particle does not merely have a momentum that we simply cannot accurately measure, but literally does not have a determinate momentum. This principle had profound implications not just for physics, but also for twentieth-century philosophy, as it threw into question certain basic principles such as causality and determinacy, and suggested that the very act of observing the universe profoundly shapes it. Nonetheless, Heisenberg’s quantum mechanical equations have led to physical theories with vast practical applications, bringing us everything from the transistor to new drugs.


Read Also:

  • Heisenberg-uncertainty-principle

    noun, Physics. 1. . /ˈhaɪzənˌbɜːɡ/ noun 1. a more formal name for uncertainty principle See uncertainty principle.

  • Heisenbug

    jargon /hi:’zen-buhg/ (From Heisenberg’s Uncertainty Principle in quantum physics) A bug that disappears or alters its behaviour when one attempts to probe or isolate it. (This usage is not even particularly fanciful; the use of a debugger sometimes alters a program’s operating environment significantly enough that buggy code, such as that which relies on the […]

  • Heisman trophy

    noun an annual award given to the outstanding college football player in the U.S. by the Downtown Athletic Club of New York City Word Origin for coach John W. Heisman

  • Heiss

    [hahys] /haɪs/ noun 1. Carol E(lizabeth) born 1940, U.S. figure skater.

Disclaimer: Heisenberg definition / meaning should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional. All content on this website is for informational purposes only.