Hemoglobin


[hee-muh-gloh-bin, hem-uh-] /ˈhi məˌgloʊ bɪn, ˈhɛm ə-/

noun, Biochemistry.
1.
the oxygen-carrying pigment of red blood cells that gives them their red color and serves to convey oxygen to the tissues: occurs in reduced form (deoxyhemoglobin) in venous blood and in combination with oxygen (oxyhemoglobin) in arterial blood. Symbol: Hb.
n.

coloring matter in red blood stones, 1862, shortening of hæmatoglobin (1845), from Greek haimato-, comb. form of haima (genitive haimatos) “blood” (see -emia) + globulin, a type of simple protein, from globule, formerly a word for “corpuscle of blood.”

hemoglobin he·mo·glo·bin (hē’mə-glō’bĭn)
n.
Abbr. Hb
The red respiratory protein of red blood cells that transports oxygen as oxyhemoglobin from the lungs to the tissues, where the oxygen is readily released and the oxyhemoglobin becomes hemoglobin.
hemoglobin
(hē’mə-glō’bĭn)
An iron-containing protein present in the blood of many animals that, in vertebrates, carries oxygen from the lungs to the tissues of the body and carries carbon dioxide from the tissues to the lungs. Hemoglobin is contained in the red blood cells of vertebrates and gives these cells their characteristic color. Hemoglobin is also found in many invertebrates, where it circulates freely in the blood. It consists of four peptide units, each attached to a nonprotein compound called heme that binds to oxygen. See Note at red blood cell.

Our Living Language : Ninety percent of the protein in red blood cells is made up of hemoglobin, the main oxygen transport molecule in mammals. A protein with four iron-containing subunits called hemes, hemoglobin is a complex molecule with a complex function. It must bind to oxygen in the lungs, then release that oxygen in the tissues, then bind to carbon dioxide in the tissues and release it in the lungs. Hemoglobin accomplishes oxygen transport by changing its structure, and even its substructures, around the oxygen-binding heme groups, making them more or less accessible to the environment. When oxygen binds to at least one of the heme groups (as happens in the oxygen-rich lungs), all of the heme groups become exposed to the environment and bind oxygen easily. The bond between oxygen and heme is a loose one, however, so that the oxygen can break free in the tissues, where the concentration of oxygen is relatively low, and thereby become available for use in the cells. When the last of the four heme subunits loses its oxygen, the structure of hemoglobin changes again, so that the size of the opening from the environment to the heme groups decreases, making it difficult for an oxygen molecule to rebind to the hemoglobin. In this way, hemoglobin stops itself from competing with the tissues for needed oxygen. When the red blood cell carrying hemoglobin returns to the lungs, where oxygen concentration is high, the cycle of oxygen binding, transport, and release starts again. Normally, iron binds with oxygen to form rust (iron oxide), but the structure of hemoglobin prevents this from happening, since it would inactivate the heme subunits. Carbon dioxide does not bind the heme in hemoglobin, but rather the amino groups at the ends of the hemoglobin’s protein subunits. Hemoglobin transport is only one of a number of bodily mechanisms by which carbon dioxide travels from the tissues to the lungs for release to the air.

hemoglobin [(hee-muh-gloh-bin)]

A complex organic molecule containing iron that carries oxygen in the blood.

Note: Hemoglobin gives blood its characteristic red color.

Read Also:

  • Hemoglobin a

    hemoglobin A n. Abbr. Hb A The hemoglobin present in normal adults.

  • Hemoglobin c

    hemoglobin C n. Abbr. Hb C An abnormal hemoglobin in which lysine has replaced glutamic acid causing reduced plasticity of the red blood cells.

  • Hemoglobin c disease

    hemoglobin C disease n. An inherited anemia characterized by an excessive destruction of red blood cells, an enlarged spleen, and target cells and hemoglobin C in the blood.

  • Hemoglobin disease

    hemoglobin disease n. Any of several inherited diseases characterized by the presence of various abnormal hemoglobin molecules in the blood.

  • Hemoglobinemia

    hemoglobinemia he·mo·glo·bi·ne·mi·a (hē’mə-glō’bə-nē’mē-ə) n. The presence of free hemoglobin in the blood plasma.


Disclaimer: Hemoglobin definition / meaning should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional. All content on this website is for informational purposes only.