Structured Data


Data that resides in a fixed field within a record or file is called structured data. This includes data contained in relational databases and spreadsheets.
Characteristics of Structured Data

Structured data first depends on creating a data model – a model of the types of business data that will be recorded and how they will be stored, processed and accessed. This includes defining what fields of data will be stored and how that data will be stored: data type (numeric, currency, alphabetic, name, date, address) and any restrictions on the data input (number of characters; restricted to certain terms such as Mr., Ms. or Dr.; M or F).

Structured data has the advantage of being easily entered, stored, queried and analyzed. At one time, because of the high cost and performance limitations of storage, memory and processing, relational databases and spreadsheets using structured data were the only way to effectively manage data. Anything that couldn’t fit into a tightly organized structure would have to be stored on paper in a filing cabinet.

Managing Structured Data

Structured data is often managed using Structured Query Language (SQL) – a programming language created for managing and querying data in relational database management systems. Originally developed by IBM in the early 1970s and later developed commercially by Relational Software, Inc. (now Oracle Corporation).

Structured data was a huge improvement over strictly paper-based unstructured systems, but life doesn’t always fit into neat little boxes. As a result, the structured data always had to be supplemented by paper or microfilm storage. As technology performance has continued to improve, and prices have dropped, it was possible to bring into computing systems unstructured and semi-structured data.
Unstructured and Semi-Structured Data

Unstructured data is all those things that can’t be so readily classified and fit into a neat box: photos and graphic images, videos, streaming instrument data, webpages, PDF files, PowerPoint presentations, emails, blog entries, wikis and word processing documents.

Semi-structured data is a cross between the two. It is a type of structured data, but lacks the strict data model structure. With semi-structured data, tags or other types of markers are used to identify certain elements within the data, but the data doesn’t have a rigid structure. For example, word processing software now can include metadata showing the author’s name and the date created, with the bulk of the document just being unstructured text. Emails have the sender, recipient, date, time and other fixed fields added to the unstructured data of the email message content and any attachments. Photos or other graphics can be tagged with keywords such as the creator, date, location and keywords, making it possible to organize and locate graphics. XML and other markup languages are often used to manage semi-structured data.
Structured Data Technology Standards

SQL has been a standard of the American National Standards Institute since 1986. It is managed by InterNational Committee for Information Technology Standards (INCITS) Technical Committee DM 32 – Data Management and Interchange. The committee has two task groups, one for databases and the other for metadata. HP, CA, IBM, Microsoft, Oracle, Sybase (SAP) and Teradata all participate, as well as several federal government agencies. Both of the committee project documents have links to further information on each project. SQL became an International Organization for Standards (ISO) standard in 1987. The published standards are available for purchase from the ANSI eStandards Store, under the INCITS/ISO/IEC 9075 classification.

Read Also:

  • stub

    A routine that doesn’t actually do anything other than declare itself and the parameters it accepts. Stubs are used commonly as placeholders for routines that still need to be developed. The stub contains just enough code to allow it to be compiled and linked with the rest of the program.

  • stub network

    A stub network is an internal network, usually a LAN (Local Area Network) that carries data packets only among local hosts. Data on a stub network is destined for an endpoint located on that network. Network traffic on a stub network is local in that it doesn’t travel off the internal network.

  • stuffing

    (1) A slang term used to describe the practice of inflating sales and earnings numbers by delivering products to the channel ahead of schedule. (2) Short for keyword stuffing.

  • Stuxnet

    Stuxnet is a family of cleverly written malware worms that primarily target SCADA (Supervisory Control and Data Acquistition) control systems for large infrastructures such as industrial power plants. The original Stuxnet worm was first discovered in 2010, and numerous variants of Stuxnet have been identified since then, with most targeting organizations in the country of […]

  • style

    In word processing, a named set of formatting parameters. By applying the style name to a section of text, you can change many formatting properties at once.


Disclaimer: Structured Data definition / meaning should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional. All content on this website is for informational purposes only.