Dictionary: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z


[noot-n, nyoot-n] /ˈnut n, ˈnyut n/

noun, Physics.
the standard unit of force in the (SI), equal to the force that produces an acceleration of one meter per second per second on a mass of one kilogram.
Abbreviation: N.
[noot-n, nyoot-n] /ˈnut n, ˈnyut n/
Sir Isaac, 1642–1727, English philosopher and mathematician: formulator of the law of gravitation.
a city in E Massachusetts, near Boston.
a city in central Kansas.
a city in central Iowa, E of Des Moines.
a male given name: a family name taken from a place-name meaning “new town.”.
the derived SI unit of force that imparts an acceleration of 1 metre per second to a mass of 1 kilogram; equivalent to 105 dynes or 7.233 poundals N
one of the deepest craters on the moon, over 7300 m deep and about 112 km in diameter, situated in the SE quadrant
Sir Isaac. 1642–1727, English mathematician, physicist, astronomer, and philosopher, noted particularly for his law of gravitation, his three laws of motion, his theory that light is composed of corpuscles, and his development of calculus independently of Leibnitz. His works include Principia Mathematica (1687) and Opticks (1704)

unit of force, 1904, named in honor of Sir Isaac Newton (1642-1727).

newton new·ton (nōōt’n, nyōōt’n)
Abbr. N
In the meter-kilogram-second system, the unit of force required to accelerate a mass of one kilogram one meter per second per second, equal to 100,000 dynes.
The SI derived unit used to measure force. One newton is equal to the force needed to accelerate a mass of one kilogram one meter per second per second. See also joule.
Newton, Sir Isaac 1642-1727.
English mathematician and scientist. He invented a form of calculus and formulated principles of physics that remained basically unchallenged until the work of Albert Einstein, including the law of universal gravitation, a theory of the nature of light, and three laws of motion. His treatise on gravitation, presented in Principia Mathematica (1687), was in his own account inspired by the sight of a falling apple.

Our Living Language : The British mathematician and physicist Sir Isaac Newton stands as one of the greatest scientists of all time. Newton spent most of his working life at Cambridge University. In 1665, the year he received his bachelor’s degree, an outbreak of the bubonic plague caused Cambridge to close for two years. Newton returned to his family home in Lincolnshire and, working alone, did some of his most important scientific work. Perhaps his greatest achievement was to demonstrate that scientific principles have universal applications. His universal law of gravitation states that there is an attractive force acting between all bodies in the universe. According to the famous—and possibly true—story, he observed an apple falling from a tree and, remarkably, connected the force drawing the apple to the ground with that keeping the Moon in its orbit. Along with his law of gravitation, Newton’s three laws of motion, which laid the basis for the science of mechanics, bridged the gap between scientific thinking about terrestrial and celestial dynamics. The laws are: (1) A body at rest or moving in a straight line will continue to do so unless acted upon by an external force; (2) The acceleration of a moving object is proportional to and in the same direction as the force acting on it and inversely proportional to the object’s mass; and (3) For every action there is an equal and opposite reaction. For nearly 400 years these laws have remained unchallenged; even Einstein’s Theory of Relativity is consistent with them. Newton stated his laws of motion in his 1687 masterpiece, the Principia Mathematica, in which he also introduced his formulation of the calculus (what we now call simply “calculus,” a different version of which was simultaneously developed by Leibnitz). In optics, Newton demonstrated that white light contains all the colors of the spectrum and provided strong evidence that light was composed of particles.

1. (Named after Isaac Newton (1642-1727)). Rapin et al, Swiss Federal Inst Tech, Lausanne 1981. General purpose expression language, syntactically ALGOL-like, with object-oriented and functional features and a rich set of primitives for concurrency. Used for undergraduate teaching at Lausanne (EPFL).
Versions: Newton 2.6 for VAX/VMS and Newton 1.2 for DEC-Alpha/OSF-1.
E-mail: J. Hulaas . (ftp://ellc4.epfl.ch /pub/languages/Newton).
[“Procedural Objects in Newton”, Ch. Rapin, SIGPLAN Notices 24(9) (Sep 1989)].
[“The Newton Language”, Ch. Rapin et al, SIGPLAN Notices 16(8):31-40 (Aug 1981)].
[“Programming in Newton”, Wuetrich and Menu, EPFL 1982].
2. Apple Newton.


Read Also:

  • Newtonian

    [noo-toh-nee-uh n, nyoo-] /nuˈtoʊ ni ən, nyu-/ adjective 1. of or relating to Sir Isaac or to his theories or discoveries: Newtonian physics. /njuːˈtəʊnɪən/ adjective 1. of, relating to, or based on the theories of Sir Isaac Newton

  • Newtonian constant of gravitation

    newtonian constant of gravitation new·to·ni·an constant of gravitation (nōō-tō’nē-ən, nyōō-) n. Abbr. G See gravitational constant.

  • Newtonian-fluid

    noun, Hydrodynamics. 1. any fluid exhibiting a linear relation between the applied shear stress and the rate of deformation.

  • Newtonian-mechanics

    noun, Physics. 1. . noun, Physics. 1. the branch of mechanics that is based on Newton’s laws of motion and that is applicable to systems that are so large that Planck’s constant can be regarded as negligibly small (distinguished from ). noun 1. (functioning as sing) a system of mechanics based on Newton’s laws of […]

Disclaimer: Newton definition / meaning should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional. All content on this website is for informational purposes only.